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It is shown that by Liapunov’s criterion stationary flows of perfect fluid with a con- 
vex velocity profile in a channel are unstable: perturbations can increase linearly 
with time. It is assumed in the proofs that the perturbation smallness for t = 0 
and t > 0 has the same meaning (one and the same norm is used). Depending on 

the choice of norm the instability is of a two-dimensional or substantially three- 
dimensional kind. 

1. Strtement of problem. In the theory of hydrodynamic instability the main 
interest is concentrated on strong (exponential) instability. If it is absent, it is interesting 
to clarify whether there is stability in the sense of some exact definition. The funda- 

mental question is how to define the “smallness” of perturbations, and what norm to use 
in the definition of stability. It seems reasonable t_o consider perturbation u (x) small, 

if I/ u (x) II1 = SUP 1 u (x) 1 or jj u iI2 = (‘j\ u (x)1 2 dx)‘/z are small. Sometimes the 

norm II u II 3 = /I u !I2 + 1) grad u I/!, is suitable, It is shown below, that in any of these 

norms all stationary plane-parallel flows of perfect fluid which have a convex velocity 

profile U, (y) are unstable. It is traditionally assumed that instability in linear appro- 

ximation guarantees a true instability, and perturbations of specified periodicity with 
respect to x and z are considered (analysis of perturbations of the general kind yields 

similar results). 
D e f i n i t i on s . A stationary flow u0 (x) is unstable in the meaning of norm \I u (I, if 

for any n there existsa solution of the linearized equations LI, (x, t) such that 

SUP nUn(X,t)I/~nIIu,(x,O)II 
ost<m (1.1) 

The related flow u. (x) is stable (in linear approximation), if there exists a constant K 
such that 

II u (~7 4 II < K II u (~7 0) 1 (1.2) 

Instead of (1.2) the boundedness of each individual solution is often required: for any 

u (x7 0) = cp (x) 
\I u (x7 t) II < c (1.3) 

This requirement is equivalent to (1.2). if cp (x) passes through some complete normal- 
ized space, and the boundedness in (1.3) is understood in the meaning of the norm of 
that same space (see, e.g. p.140 in Cl]). If one of these conditions is not satisfied, 
(1.3) does not imply stability in the meaning of (1.2). 

2. Input equ(rtions. Inrtrbillty for k = 0. Setting Q (z, y, z; t) = 
I.# (y, t) &W+mz), we write the linearized equations 

ut + ikU,u + U,’ v + ikp = 0 (2.1) 

vt + ikU,v + p’ = 0, v(0, t)==v(l, t)=O 
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wt + ikU,w $ imp = 0, iku f v’ + imw = 

ull = V” (!I), 07 0)) 
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0 

where u = ( ZJ, D, w), p are small perturbations, and U, is the unperturbed velocity. 
From (2.1) follows 

p” - (k” + m2) p = - 2ikUo’v, p’(0, t) -p/(1, t) = 0 (2.2) 

%G,, 
z+ + ikll, (y) v - 2ik \ o ay (Y 7 7) f-Jo’ (-I) v (VT t) dr7 = 0 (2.3) 

System (2.1) has the following particular solutions : 
1) for k = 0 and m # 0 

u = f (Y) - tu, (Y)V (Y), v = v(y), w = w(y), p = 0 (2.4) 

(v’ + imw = 0) 

(2.5) 

2) for k + 0. and m # 0 

p=v=o, u (y, t) = u (y, 0) e-ikUdv)t 

w (y, t) = w (y, 0) e-ikuo(o(y)t 

We introduce the notation 

Then from (2.4) and (2.5) follows instability (2.1) : 
1) for k = 0 and m # 0 in the meaning of any norm 

2) for k # 0 and m # 0 in the meaning of 11 u jl3. 
Note that in the subspace iku + v’ -I- imw = 0, v (0) = v (1) = 0 norm (1 u II2 is 

equivalent to the following: 

Ilull= (~~l~lz+Iv’ls+lm12rdy)~~* 

Let us consider Eq. (2.3)rand the norm 

(2.7) 

IIv~s= (S,VTdY)%, v’ L= g (v (0) = v (1) = 0) 
IJ 

(2.8) 

It can be shown that instability (2.3) in this norm implies the instability of system (2.1) 
in norm (2.7) or 1 u jj2. 

Equation (2.3) is invariant with respect to the substitution v (y, t) -+ v(y, - t). Hehce 
to prove instability it is sufficient to indicate at least one solution which tends to zero. 

In fact,if 11 v (y, t,) 11 < 1 / n [ v (y, 0) II, then for v, (y, t) = C (y, t, - t) we 
have (see (1.1)) 

(2.9) 

8. Inrtrblllty tot k# 0 and any m. Let us assume now that the Rayleigh 
condition U,” (Y) # 0 which guarantees the absence of any strong instability is satis- 
fied. 

For UOR (y) # 0 all reasonably smooth solutions of Eq. (2.3) tend to zero. This 
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important aspect was indicated in [ 2, 31, however without a rigorous proof. We present 
such proof in abstract terms for the sake of brevity. 

Let y = U” - (k2 + m2) U. Then from (2.3) 

aylat = iAy, Ay = - klJ, (y)y + MJU” (y) v (3.1) 

For uO” + 0 operator A is self-conjugate in the metric 

(q41)h7(29 = &2q Uo"(y)l-ldy 

0 

and (for k # 0) has a continuous spectrum occup)ling the segment. As shown in [4] 

that spectrum is absolutely continuous. It follows from this that all solutions (3.1) 

y (t) = eiAt y (0) for t --f 00 tend weakly to zero (i.e. (y (t), cp) + 0 for any 

function rp). Furthermore v’ = ly, where 1 is an integral operator with a piecewise 
continuous kernel. It is entirely continuous in L, (0, 1) consequently, (v’, v’) +- 0 
and 

II413 = (~lwlldY~-o for t 9 00 

Thus, in the meaning of norm 11 u /I2 , sy stem (2.1) is unstable, The proof of instability 
in the meaning of IJ u /Jr is similar. 

With a suitable choice Y (Yt 0) II 7~ (!I, t) 13 \< I!? / t *(see [z] and Note 3 below), 
hence it is possible to assume an approximately linear increase of perturbations with 

time (see (2.9)). 

4. The formulation of the stability problem presented in Sect. 1 is, of course. not the 
only one possible. Retaining the concept of flow perturbation only for t = 0, it is pos- 
sible to narrow the class of initial perturbations by, for instance, considering perturbations 

to be small, when velocities and their derivatives are small. In that case instead of(1.2) 

we have a condition of the kind 11 u (x, t) /I2 < M 11 u (x, 0) (I3 , where M is inde- 
pendent of u . 

In the linearized problem (Sect. 2) stability is present in the indicated wider meaning 
when k # 0 (see [s]). For k =I 0 and ?n # 0 there is no stability (see (2.4)) and, 
consequently, it does not exist (in three-dimensional analysis) in the exact nonlinear 

meaning. 

For other stationary flows of perfect fluid stability in the wider meaning is not exclu- 
ded. It is, however, possible to expect that in the conventional meaning (Sect. 1) all 

stationary flows of perfect fluid in a channel, tube, or between two rotating cylinders are 
(at least weakly) unstable. 

Notes. 1) (to Sect. 1). The Liapunov stability was apparently established only in 
the particular case of perfect fluid flows in a channel, in which convex profiles of UO (y). 
only plane perturbations and norm ]I u ]I 3 are considered. In that case stability exists 
not only in the meaning of (1.2) but, also, in its exact (nonlinear) Liapunov’s definition 
[6]. (In linear analysis the first condition may be somewhat relaxed). 

2) (to Sect. 2). The three-dimensional instability evident in the considered prob- 
lem in the meaning of I] u I] 9 (or I] rot u I] 2) is probably a particular manifestation of 
the general tendency of three-dimensional (rotational) to vorticity increase. For station- 
ary flows of the “general kind” this tendency is discussed (but not proved) in [7J, 
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3) (to Sect. 3). The absolute continuity of spectrum A isa comparatively refined 
result, Here a less subtle one is sufficient. Let Aq = - kUo (Y) y and A = A0 + B. 

The following reasoning (usual in the theory of perturbations in a continuous spectrum) 

shows that for certain yo we have the asymptotic approach e UA yo - e it-‘$. Let ?$ = 
,-2A,if&h. q-hen 

d$ . -ifABei’&h 
dt==-Ee 1 

Let h be twice continuously differentiable and vanish in some neighborhood of points 

0, 1, y, (where lJo’ (y,) = 0). Then 

/j BeifABh II< C / t*, * @) = 9, + 0 (i 11) 

Let us set yo = 9,. Then 

7 (t) = ,itAyo = $A% + e = e-ikfv~v)h (Y) + E (y , t) , II e II g C / t 

? aG 
v’(y,t)= -QY,wr(?,wl==J+~~ 

s 
0 

1 
’ BG 

J= 
s 

-g- (y , q) e-~k~u~~)~ (Q dq 

0 

where G (y, 9) is the Green’s function for 

V” - (P + n$) u = f, Y {O) = 0 (1) = 0 

Since the integral J tends uniformly to zero (= 0 (i / t)),with respect to Y, hence 

II ?J II 1) = II v’ II a < c / t 
4) (to Sect. 4). In the often cited works [Z, 3, 81 plane pe~~bations (nt. = 0) are 

considered and the boundedness of individual solutions of linearized equations for t - 00 
is discussed with the use of finiteness of 1 grad u I l=o. It should be stresses that, if the 
boundedness for t -f 00 is specified for all initial data, Liapunov’s stability follows (in 
the linear approximation) in the meaning of Sect. 4 but not in the conventional meaning 

(Sect. 1) (*). 
51 (to Sects. l-3). Equations (2.1) have solutions for any initial data in L,, which 

satisfy the condition iku + V’ + imw = 0. Hence there exist individual solutions of 

u (y, t) for which 11 II (y, t) 11 -) w. Evidently such solutions cannot be smooth, since for 
these U“ e L,. By the same token u has an “infinite vorticity” : one of the integrals 

1 1 

I 
* I ut 12dy, 

0 
5 J 7d pay 
0 

does not exist. However there exist simultaneously u, (Y, t) which are as smooth as 
required and satisfy (1, l), 

The author thanks L. A. Dikii for the interesting discussion of the problems considered 
here, 

*) S h n o 1’ E,E , On the theory of stability of the simplest stationary flows of perfect 
fluid. Preprint (in Russian), Inst. Rrikl. Matem., Akad. Nauk SSSR, Np 53, 1973. 
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Model equations are derived for collective degrees of freedom, i. e, Fourier am- 
plitudes of velocity field summated over the wave number octave (the wave num- 
ber modulus changes twice within the octave). Stationary solutions of these equa- 
tions which in the related inertial intervals yield the laws of similarity are analyzed 
(k-‘~s in a three-dimensioM1 turbulence and It-3 in a two-dimensional one). Non- 

stationary problems of forming cascade processes were numerically investigated 

in [Il. 
Simulation of cascade processes of energy transmission, vorticity, nonuniform 

concentration of admixtures is of particular interest in investigations of turbulent 
flows by the spectrum of turbulent motions. Cascade processes determine the in- 

ner structure of flows and the mechanism of turbulent dissipation. In the last few 
years it has been possible to simulate on a computer a two-dimensional space- 
periodicflow of not very high viscosity and to obtain a section of the energy spect- 

rum E (k) - km3 [2--51 which corresponds to the cascade process of vorticity 
transfer [2, 61. The authors are aware of only one publication v] on numerical 
simulation of three-dimensional periodic flows, where the Reynolds numbers were 
not sufficiently high for the investigation of the cascade energy transmission pro- 
cess and obtaining a section of the spectrum governed by the “law of 5/3*‘. 


